Download the YOLOv8 official code. ultralytics/ultralytics
$ git clone https://github.com/ultralytics/ultralytics
Refer README.md
to create and train a YOLOv8n model. My version torch==1.10.1
and ultralytics==8.0.86
.
$ git lfs install $ git lfs clone https://gitlab.com/khadas/vim4_npu_sdk.git
After training the model, modify ultralytics/ultralytics/nn/modules/head.py
as follows.
diff --git a/ultralytics/nn/modules/head.py b/ultralytics/nn/modules/head.py index 0b02eb3..0a6e43a 100644 --- a/ultralytics/nn/modules/head.py +++ b/ultralytics/nn/modules/head.py @@ -42,6 +42,9 @@ class Detect(nn.Module): def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" + if torch.onnx.is_in_onnx_export(): + return self.forward_export(x) + shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) @@ -80,6 +83,15 @@ class Detect(nn.Module): a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) + def forward_export(self, x): + results = [] + for i in range(self.nl): + dfl = self.cv2[i](x[i]).contiguous() + cls = self.cv3[i](x[i]).contiguous() + results.append(torch.cat([cls, dfl], 1)) + return tuple(results) +
If you pip-installed ultralytics package, you should modify in package.
Create a python file written as follows to export ONNX model.
from ultralytics import YOLO model = YOLO("./runs/detect/train/weights/best.pt") results = model.export(format="onnx")
$ python export.py
Use Netron to check your model output like this. If not, please check your head.py
.
Pull yolov8n.onnx
model into vim4_npu_sdk/adla-toolkit-binary-1.2.0.9/python
and then run convert-in-docker.sh
$ ./convert-in-docker.sh ksnn
If your yolov8n model parameters are different from ours, you can change parameters in ksnn_args.txt
.
Download KSNN library and demo code. khadas/ksnn-vim4
$ git clone https://github.com/khadas/ksnn-vim4 $ cd ksnn/ksnn $ sudo apt update $ sudo apt install python3-pip $ pip3 install ksnn_vim4-1.4-py3-none-any.whl
Put yolov8n.nb
and libnn_yolov8n.so
into ksnn/examples/yolov8n/models/VIM3
and ksnn/examples/yolov8n/libs
If your model's classes is not 80, please remember to modify the parameter, LISTSIZE
.
LISTSIZE = classes number + 64
$ cd ksnn/examples/yolov8n $ python3 yolov8n-picture.py --model ./models/VIM4/yolov8n_int8.adla --library ./libs/libnn_yolov8n.so --picture ./data/horses.jpg --level 0
$ cd ksnn/examples/yolov8n $ python3 yolov8n-cap.py --model ./models/VIM4/yolov8n_int8.adla --library ./libs/libnn_yolov8n.so --device 0
0
is the camera device index.
For RGB
input model.
# yolov8n_int8 orig_img = cv.imread(picture, cv.IMREAD_COLOR) img = cv.resize(orig_img, (640, 640)) print('Done.') print('Start inference ...') start = time.time() data = yolov8.nn_inference(img, input_shape=(640, 640, 3), input_type="RGB", output_shape=[(80, 80, 144), (40, 40, 144), (20, 20, 144)], output_type="FLOAT") end = time.time() print('Done. inference time: ', end - start)
If you want to use RAW
input model, please use this input codes.
# yolov8n_int8_raw img = cv.resize(orig_img, (640, 640)).astype(np.float32) img[:, :, 0] = img[:, :, 0] - mean[0] img[:, :, 1] = img[:, :, 1] - mean[1] img[:, :, 2] = img[:, :, 2] - mean[2] img = img / var[0] print('Done.') print('Start inference ...') start = time.time() data = yolov8.nn_inference(img, input_shape=(640, 640, 3), input_type="RAW", output_shape=[(80, 80, 144), (40, 40, 144), (20, 20, 144)], output_type="RAW") end = time.time() print('Done. inference time: ', end - start)