Doc for version ddk-3.4.7.7
Get source khadas/vim4_npu_sdk.
$ git lfs install $ git lfs clone https://github.com/khadas/vim4_npu_sdk $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-3.1.7.4 convert-in-docker.sh Dockerfile docs README.md
adla-toolkit-binary/docs
- SDK documentationsadla-toolkit-binary/bin
- SDK tools required for model conversionadla-toolkit-binary/demo
- Conversion examplesOnly convert tool version branch npu-ddk-3.4.7.7 or higher supports PPOCR.
First, convert model from Paddle to ONNX. Please refer the two doc. Paddle2ONNX/blob/develop/README_en.md, PaddleOCR/blob/main/docs/ppocr/infer_deploy/paddle2onnx.en.md.
Our version is paddlepaddle==2.6.1
and paddle2onnx==1.2.11
and our covnert command.
$ paddle2onnx --model_dir ./ch_PP-OCRv4_det_infer --model_filename inference.pdmodel --params_filename inference.pdiparams --save_file ppocr_det.onnx $ paddle2onnx --model_dir ./ch_PP-OCRv4_rec_infer --model_filename inference.pdmodel --params_filename inference.pdiparams --save_file ppocr_rec.onnx
Pull ppocr_det.onnx
model and ppocr_rec
model into vim4_npu_sdk/adla-toolkit-binary-3.1.7.4/python
and modify ksnn_args.txt
.
--model-name ppocr_det --model-type onnx --model ./ppocr_det.onnx --inputs "x" --input-shapes "3,736,736" --dtypes "float32" --quantize-dtype int8 --outdir onnx_output --channel-mean-value "123.675,116.28,103.53,57.375" --source-file ocr_det_dataset.txt --iterations 1 --batch-size 1 --kboard VIM4 --inference-input-type "float32" --inference-output-type "float32"
--model-name ppocr_rec --model-type onnx --model ./ppocr_rec.onnx --inputs "x" --input-shapes "3,48,320" --dtypes "float32" --quantize-dtype int16 --outdir onnx_output --channel-mean-value "127.5,127.5,127.5,128" --source-file ocr_rec_dataset.txt --iterations 1 --batch-size 1 --kboard VIM4 --inference-input-type "float32" --inference-output-type "float32"
$ ./convert-in-docker.sh ksnn
Download KSNN library and demo code. khadas/ksnn-vim4
$ git clone https://github.com/khadas/ksnn-vim4
Only KSNN demo tag ddk-3.4.7.7 or higher supports PPOCR. Only firmware newer than 241129 supports this PPOCR demo.
If you use Ubuntu 24.04, demo must run in python virtual environment.
$ sudo apt update $ sudo apt install python3-venv $ python3 -m venv myenv $ source myenv/bin/activate
$ cd ksnn-vim4/ksnn $ sudo apt update $ sudo apt install python3-pip $ pip3 install ksnn_vim4-1.4.1-py3-none-any.whl $ pip3 install shapely pyclipper Pillow
$ cd ksnn-vim4/example/ppocr $ export QT_QPA_PLATFORM=xcb $ python3 ppocr-picture.py --det_model ./models/VIM4/ppocr_det_int8.adla --det_library ./libs/libnn_ppocr_det.so --rec_model ./models/VIM4/ppocr_rec_int16.adla --rec_library ./libs/libnn_ppocr_rec.so --picture ./data/test.png
$ cd ksnn-vim4/example/ppocr $ export QT_QPA_PLATFORM=xcb $ python3 ppocr-cap.py --det_model ./models/VIM4/ppocr_det_int8.adla --det_library ./libs/libnn_ppocr_det.so --rec_model ./models/VIM4/ppocr_rec_int16.adla --rec_library ./libs/libnn_ppocr_rec.so --device 0
0
is the camera device index.