Doc for version ddk-3.4.7.7
bubbliiiing/retinaface-pytorch
$ git clone https://github.com/bubbliiiing/retinaface-pytorch
Before training, modify retinaface-pytorch/utils/utils.py
as follows.
diff --git a/utils/utils.py b/utils/utils.py index 87bb528..4a22f2a 100644 --- a/utils/utils.py +++ b/utils/utils.py @@ -25,5 +25,6 @@ def get_lr(optimizer): return param_group['lr'] def preprocess_input(image): - image -= np.array((104, 117, 123),np.float32) + image = image / 255.0 return image
Follow Docker official documentation to install Docker: Install Docker Engine on Ubuntu.
Follow the script below to get Docker image:
docker pull numbqq/npu-vim4
Download Tool from khadas/vim4_npu_sdk.
$ git lfs install $ git lfs clone https://github.com/khadas/vim4_npu_sdk $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-3.1.7.4 convert-in-docker.sh Dockerfile docs README.md
adla-toolkit-binary/docs
- SDK documentationsadla-toolkit-binary/bin
- SDK tools required for model conversionadla-toolkit-binary/demo
- Conversion examplesIf your kernel is older than 241129, please use branch npu-ddk-1.7.5.5.
After training the model, we should convert the PyTorch model into an ONNX model. Create the Python conversion script as follows and run.
import torch import numpy as np from nets.retinaface import RetinaFace from utils.config import cfg_mnet, cfg_re50 model_path = "logs/Epoch150-Total_Loss6.2802.pth" net = RetinaFace(cfg=cfg_mnet, mode='eval').eval() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net.load_state_dict(torch.load(model_path, map_location=device)) img = torch.zeros(1, 3, 640, 640) torch.onnx.export(net, img, "./retinaface.onnx", verbose=False, opset_version=12, input_names=['images'])
Enter vim4_npu_sdk/demo
and modify convert_adla.sh
as follows.
#!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/retinaface/retinaface.onnx \ --inputs "images" \ --input-shapes "3,640,640" \ --dtypes "float32" \ --inference-input-type float32 \ --inference-output-type float32 \ --quantize-dtype int8 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --source-file ./retinaface_dataset.txt \ --iterations 500 \ --disable-per-channel False \ --batch-size 1 --target-platform PRODUCT_PID0XA003
Run convert_adla.sh
to generate the VIM4 model. The converted model is xxx.adla
in onnx_output
.
$ bash convert_adla.sh
Clone the source code khadas/vim4_npu_applications.
$ git clone https://github.com/khadas/vim4_npu_applications
If your kernel is older than 241129, please use version before tag ddk-3.4.7.7.
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
Put retinaface_int8.adla
in vim4_npu_applications/retinaface/data/
.
# Compile $ cd vim4_npu_applications/retinaface $ mkdir build $ cd build $ cmake .. $ make # Run $ ./retinaface -m ../data/retinaface_int8.adla -p ../data/timg.jpg
Put retinaface_int8.adla
in vim4_npu_applications/retinaface_cap/data/
.
$ cd vim4_npu_applications/face_recognition_cap $ mkdir build $ cd build $ cmake .. $ make
MIPI Camera
$ ./retinaface_cap -m ../data/retinaface_int8.adla -t mipi
USB Camera
$ cd build $ ./retinaface_cap -m ../data/retinaface_int8.adla -t usb -d 0
TIP: Replace 0 as the number for your camera device. Such as /dev/video5
, it should be -d 5
.