Khadas Docs

Amazing Khadas, always amazes you!

User Tools

Site Tools


Sidebar

products:sbc:vim4:npu:demos:facenet

Doc for version ddk-3.4.7.7

FaceNet PyTorch VIM4 Demo - 6

Get Source Code

bubbliiiing/facenet-pytorch

$ git clone https://github.com/bubbliiiing/facenet-pytorch

Convert Model

Build virtual environment

Follow Docker official documentation to install Docker: Install Docker Engine on Ubuntu.

Follow the script below to get Docker image:

docker pull numbqq/npu-vim4

Get Convert Tool

Download Tool from khadas/vim4_npu_sdk.

$ git lfs install
$ git lfs clone https://github.com/khadas/vim4_npu_sdk
$ cd vim4_npu_sdk
$ ls
adla-toolkit-binary  adla-toolkit-binary-3.1.7.4  convert-in-docker.sh  Dockerfile  docs  README.md
  • adla-toolkit-binary/docs - SDK documentations
  • adla-toolkit-binary/bin - SDK tools required for model conversion
  • adla-toolkit-binary/demo - Conversion examples

If your kernel is older than 241129, please use branch npu-ddk-1.7.5.5.

Convert

After training model, modify facenet-pytorch/nets/facenet.py as follows.

diff --git a/nets/facenet.py b/nets/facenet.py
index e7a6fcd..93a81f1 100644
--- a/nets/facenet.py
+++ b/nets/facenet.py
@@ -75,7 +75,7 @@ class Facenet(nn.Module):
             x = self.Dropout(x)
             x = self.Bottleneck(x)
             x = self.last_bn(x)
-            x = F.normalize(x, p=2, dim=1)
             return x
         x = self.backbone(x)
         x = self.avg(x)

Create a Python file written as follows and run to convert the model to ONNX.

export.py
import torch
import numpy as np
from nets.facenet import Facenet as facenet
 
model_path = "logs/ep092-loss0.177-val_loss1.547.pth"
net = facenet(backbone="mobilenet", mode="predict").eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net.load_state_dict(torch.load(model_path, map_location=device), strict=False)
 
img = torch.zeros(1, 3, 160, 160)
torch.onnx.export(net, img, "./facenet.onnx", verbose=False, opset_version=12, input_names=['images'])

Enter vim4_npu_sdk/demo and modify convert_adla.sh as follows.

convert_adla.sh
#!/bin/bash
 
ACUITY_PATH=../bin/
#ACUITY_PATH=../python/tvm/
adla_convert=${ACUITY_PATH}adla_convert
 
 
if [ ! -e "$adla_convert" ]; then
    adla_convert=${ACUITY_PATH}adla_convert.py
fi
 
$adla_convert --model-type onnx \
        --model ./model_source/facenet/facenet.onnx \
        --inputs "images" \
        --input-shapes  "3,160,160"  \
        --dtypes "float32" \
        --inference-input-type float32 \
	--inference-output-type float32 \
        --quantize-dtype int8 --outdir onnx_output  \
        --channel-mean-value "0,0,0,255"  \
        --source-file facenet_dataset.txt  \
        --iterations 394 \
        --disable-per-channel False \
        --batch-size 1 --target-platform PRODUCT_PID0XA003

Run convert_adla.sh to generate the VIM4 model. The converted model is xxx.adla in onnx_output.

$ bash convert_adla.sh

Run inference on the NPU

Get source code

Clone the source code from our khadas/vim4_npu_applications.

$ git clone https://github.com/khadas/vim4_npu_applications

If your kernel is older than 241129, please use version before tag ddk-3.4.7.7.

Install dependencies

$ sudo apt update
$ sudo apt install libopencv-dev python3-opencv cmake

Compile and run

Picture input demo

There are two modes of this demo. One is converting face images into feature vectors and saving vectors in the face library. Another is comparing input face image with faces in the library and outputting Euclidean distance and cosine similarity.

Put facenet_int8.adla in vim4_npu_applications/facenet/data/.

# Compile
$ cd vim4_npu_applications/facenet
$ mkdir build
$ cd build
$ cmake ..
$ make
 
# Run mode 1
$ ./facenet -m ../data/facenet_int8.adla -p 1

After running mode 1, a file named face_feature_lib will generate in vim4_npu_applications/facenet. With this file generated, you can run mode 2.

# Run mode 2
$ ./facenet -m ../data/model/facenet_int8.adla -p ../data/img/lin_2.jpg

Here are two comparison methods, Euclidean distance and cosine similarity.

Euclidean distance is smaller, more similar between two faces.

Cosine similarity is closer to 1, more similar between two faces.

Last modified: 2025/01/08 22:31 by louis