We will use a DenseNet model based on YCG09/chinese_ocr
git clone https://github.com/YCG09/chinese_ocr
Follow Docker official documentation to install Docker: Install Docker Engine on Ubuntu.
Follow the script below to get Docker image:
docker pull numbqq/npu-vim4
$ git lfs install $ git lfs clone https://gitlab.com/khadas/vim4_npu_sdk.git $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-1.2.0.9 convert-in-docker.sh Dockerfile docs README.md
adla-toolkit-binary/docs
- SDK documentationsadla-toolkit-binary/bin
- SDK tools required for model conversionadla-toolkit-binary/demo
- Conversion examplesDownload The conversion tool from khadas/vim4_npu_sdk.
$ git clone https://gitlab.com/khadas/vim4_npu_sdk
After training the model, run the scripts as follows to modify net input and output and convert the model to ONNX.
Keras model(.h5
) can be converted into a VIM4 model directly. If you want to convert a Keras model, please use model.save
to save the model with weight and network structure.
import onnx from keras.models import * import keras import keras2onnx from train import get_model import densenet basemodel, model = get_model(32, 88) # input height, classes number basemodel.load_weights("models/weights_densenet-32-0.40.h5") onnx_model = keras2onnx.convert_keras(basemodel, basemodel.name, target_opset=12) onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_value = int(32) onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_value = int(280) onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.node.remove(onnx_model.graph.node[0]) onnx_model.graph.node[0].input[0] = "the_input" onnx.save_model(onnx_model, "./densenet_ctc.onnx")
Enter vim4_npu_sdk/demo
and modify convert_adla.sh
as follows. We should quantize the model to int16 because it is very inaccurate with int8.
#!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/densenet_ctc/densenet_ctc.onnx \ --inputs "the_input" \ --input-shapes "1,32,280" \ --dtypes "float32" \ --inference-input-type float32 \ --inference-output-type float32 \ --quantize-dtype int16 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --source-file ./densenet_ctc_dataset.txt \ --iterations 500 \ --disable-per-channel False \ --batch-size 1 --target-platform PRODUCT_PID0XA003
Run convert_adla.sh
to generate the VIM4 model. The converted model is xxx.adla
in onnx_output
.
$ bash convert_adla.sh
Clone the source code khadas/vim4_npu_applications.
$ git clone https://github.com/khadas/vim4_npu_applications
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
Put densenet_ctc_int16.adla
in vim4_npu_applications/densenet_ctc/data/
.
# Compile $ cd vim4_npu_applications/densenet_ctc $ mkdir build $ cd build $ cmake .. $ make # Run $ sudo ./densenet_ctc -m ../data/densenet_ctc_int16.adla -p ../data/KhadasTeam.png
If your densenet_ctc
- DenseNet-CTC model classes are not the same, please change data/class_str.txt
and the OBJ_CLASS_NUM
in include/postprocess.h
.