This demo need kernel version >= 5.15.
We think VIM3 C++ Demo is too complex. It is not friendly for users. So we provide a lite version. This document will help you use this lite version.
YOLOv7-Tiny is an object detection model. It uses bounding boxes to precisely draw each object in image.
Inference results on VIM3.
Inference speed test: USB camera about 216ms per frame. MIPI camera about 200ms per frame.
Download the YOLOv7 official code. WongKinYiu/yolov7
$ git clone https://github.com/WongKinYiu/yolov7
Refer README.md to create and train a YOLOv7 tiny model.
We provided a docker image which contains the required environment to convert the model.
Follow Docker official docs to install Docker: Install Docker Engine on Ubuntu.
Follow the command below to get Docker image:
docker pull numbqq/npu-vim3
$ git lfs install $ git lfs clone https://github.com/khadas/aml_npu_sdk.git
$ cd aml_npu_sdk/acuity-toolkit/demo && ls aml_npu_sdk/acuity-toolkit/demo$ ls 0_import_model.sh 1_quantize_model.sh 2_export_case_code.sh data dataset_npy.txt dataset.txt extractoutput.py inference.sh input.npy model
After training the model, modify yolov7/models/yolo.py as follows.
diff --git a/models/yolo.py b/models/yolo.py index 95a019c..a2e611d 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -144,7 +144,7 @@ class IDetect(nn.Module): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) - x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + # x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.grid[i].shape[2:4] != x[i].shape[2:4]:
Then, run export.py to convert the model to ONNX.
$ python export.py
Enter aml_npu_sdk/acuity-toolkit/demo and put yolov7_tiny.onnx into demo/model. Modify 0_import_model.sh, 1_quantize_model.sh and 2_export_case_code.sh as follows.
#!/bin/bash
NAME=yolov7_tiny
ACUITY_PATH=../bin/
pegasus=${ACUITY_PATH}pegasus
if [ ! -e "$pegasus" ]; then
pegasus=${ACUITY_PATH}pegasus.py
fi
#Onnx
$pegasus import onnx \
--model ./model/${NAME}.onnx \
--output-model ${NAME}.json \
--output-data ${NAME}.data
#generate inpumeta --source-file dataset.txt
$pegasus generate inputmeta \
--model ${NAME}.json \
--input-meta-output ${NAME}_inputmeta.yml \
--channel-mean-value "0 0 0 0.0039215" \
--source-file dataset.txt
#!/bin/bash
NAME=yolov7_tiny
ACUITY_PATH=../bin/
pegasus=${ACUITY_PATH}pegasus
if [ ! -e "$pegasus" ]; then
pegasus=${ACUITY_PATH}pegasus.py
fi
#--quantizer asymmetric_affine --qtype uint8
#--quantizer dynamic_fixed_point --qtype int8(int16,note s905d3 not support int16 quantize)
# --quantizer perchannel_symmetric_affine --qtype int8(int16, note only T3(0xBE) can support perchannel quantize)
$pegasus quantize \
--quantizer dynamic_fixed_point \
--qtype int8 \
--rebuild \
--with-input-meta ${NAME}_inputmeta.yml \
--model ${NAME}.json \
--model-data ${NAME}.data
#!/bin/bash
NAME=yolov7_tiny
ACUITY_PATH=../bin/
pegasus=$ACUITY_PATH/pegasus
if [ ! -e "$pegasus" ]; then
pegasus=$ACUITY_PATH/pegasus.py
fi
$pegasus export ovxlib\
--model ${NAME}.json \
--model-data ${NAME}.data \
--model-quantize ${NAME}.quantize \
--with-input-meta ${NAME}_inputmeta.yml \
--dtype quantized \
--optimize VIPNANOQI_PID0X88 \
--viv-sdk ${ACUITY_PATH}vcmdtools \
--pack-nbg-unify
rm -rf ${NAME}_nbg_unify
mv ../*_nbg_unify ${NAME}_nbg_unify
cd ${NAME}_nbg_unify
mv network_binary.nb ${NAME}.nb
cd ..
#save normal case demo export.data
mkdir -p ${NAME}_normal_case_demo
mv *.h *.c .project .cproject *.vcxproj BUILD *.linux *.export.data ${NAME}_normal_case_demo
# delete normal_case demo source
#rm *.h *.c .project .cproject *.vcxproj BUILD *.linux *.export.data
rm *.data *.quantize *.json *_inputmeta.yml
If you use VIM3L, optimize use VIPNANOQI_PID0X99.
After modifying, return to aml_npu_sdk and run convert-in-docker.sh.
If run succeed, converted model and library will generate in demo/yolov7_tiny_nbg_unify.
$ cd ../../ $ bash convert-in-docker.sh $ cd acuity-toolkit/demo/yolov7_tiny_nbg_unify $ ls BUILD main.c makefile.linux nbg_meta.json vnn_global.h vnn_post_process.c vnn_post_process.h vnn_pre_process.c vnn_pre_process.h vnn_yolov7tiny.c vnn_yolov7tiny.h yolov7_tiny.nb yolov7tiny.vcxproj
Get the source code: khadas/vim3_npu_applications_lite
$ git clone https://github.com/khadas/vim3_npu_applications_lite
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
Put yolov7_tiny.nb into vim3_npu_applications_lite/yolov7_tiny_demo_x11_usb/nn_data.
Replace yolov7_tiny_demo_x11_usb/vnn_yolov7tiny.c and yolov7_tiny_demo_x11_usb/include/vnn_yolov7tiny.h with your generating vnn_yolov7tiny.c and vnn_yolov7tiny.h.
# Compile $ cd vim3_npu_applications_lite/yolov7_tiny_demo_x11_usb $ bash build_vx.sh $ cd bin_r_cv4 # usb $ ./yolov7_tiny_demo_x11_usb -m ../nn_data/yolov7_tiny_88.nb -t usb -d /dev/video0 # mipi $ ./yolov7_tiny_demo_x11_usb -m ../nn_data/yolov7_tiny_88.nb -t mipi -d /dev/video50