This demo need kernel version >= 5.15.
We think VIM3 C++ Demo is too complex. It is not friendly for users. So we provide a lite version. This document will help you use this lite version.
Densenet_CTC is a text recognition model. It only can recognize single line text. Therefore usually, it needs to be used in conjunction with a text detection model.
Recognition image and inference results on VIM3.
We will use a DenseNet model based on YCG09/chinese_ocr.
git clone https://github.com/YCG09/chinese_ocr
We provided a docker image which contains the required environment to convert the model.
Follow Docker official docs to install Docker: Install Docker Engine on Ubuntu.
Follow the command below to get Docker image:
docker pull numbqq/npu-vim3
$ git lfs install $ git lfs clone https://github.com/khadas/aml_npu_sdk.git
$ cd aml_npu_sdk/acuity-toolkit/demo && ls aml_npu_sdk/acuity-toolkit/demo$ ls 0_import_model.sh 1_quantize_model.sh 2_export_case_code.sh data dataset_npy.txt dataset.txt extractoutput.py inference.sh input.npy model
Keras model(.h5) can be converted into a VIM4 model directly. If you want to convert a Keras model, please use model.save to save the model with weight and network structure.
import onnx from keras.models import * import keras import keras2onnx from train import get_model import densenet basemodel, model = get_model(32, 88) # input height, classes number basemodel.load_weights("models/weights_densenet-32-0.40.h5") onnx_model = keras2onnx.convert_keras(basemodel, basemodel.name, target_opset=12) onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_value = int(32) onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_value = int(280) onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.node.remove(onnx_model.graph.node[0]) onnx_model.graph.node[0].input[0] = "the_input" onnx.save_model(onnx_model, "./densenet_ctc.onnx")
A parameter in flatten can not be recognized by conversion tool. So, this model can not use convert-in-docker.sh.
Enter aml_npu_sdk/acuity-toolkit/demo and put densenet_ctc.onnx into demo/model.
Modify 0_import_model.sh as follows.
#!/bin/bash
NAME=densenet_ctc
ACUITY_PATH=../bin/
pegasus=${ACUITY_PATH}pegasus
if [ ! -e "$pegasus" ]; then
pegasus=${ACUITY_PATH}pegasus.py
fi
#Onnx
$pegasus import onnx \
--model ./model/${NAME}.onnx \
--output-model ${NAME}.json \
--output-data ${NAME}.data
#generate inpumeta --source-file dataset.txt
$pegasus generate inputmeta \
--model ${NAME}.json \
--input-meta-output ${NAME}_inputmeta.yml \
--channel-mean-value "0 0 0 0.0039215" \
--source-file dataset.txt
Run 0_import_model.sh.
$ bash 0_import_model.sh
After running, densenet_ctc.json will be generated. Modify it as follows.
"Flatten_flatten_2_7": { "name": "Flatten_flatten_2", "op": "reshape", "parameters": { "shape": [ - 0, + 1, -1 ] }, "inputs": [ "@Reshape_flatten_reshape_0_8:out0" ], "outputs": [ "out0" ] },
Then, modify 1_quantize_model.sh and 2_export_case_code.sh and run.
#!/bin/bash
NAME=densenet_ctc
ACUITY_PATH=../bin/
pegasus=${ACUITY_PATH}pegasus
if [ ! -e "$pegasus" ]; then
pegasus=${ACUITY_PATH}pegasus.py
fi
#--quantizer asymmetric_affine --qtype uint8
#--quantizer dynamic_fixed_point --qtype int8(int16,note s905d3 not support int16 quantize)
# --quantizer perchannel_symmetric_affine --qtype int8(int16, note only T3(0xBE) can support perchannel quantize)
$pegasus quantize \
--quantizer dynamic_fixed_point \
--qtype int8 \
--rebuild \
--with-input-meta ${NAME}_inputmeta.yml \
--model ${NAME}.json \
--model-data ${NAME}.data
#!/bin/bash
NAME=densenet_ctc
ACUITY_PATH=../bin/
pegasus=$ACUITY_PATH/pegasus
if [ ! -e "$pegasus" ]; then
pegasus=$ACUITY_PATH/pegasus.py
fi
$pegasus export ovxlib\
--model ${NAME}.json \
--model-data ${NAME}.data \
--model-quantize ${NAME}.quantize \
--with-input-meta ${NAME}_inputmeta.yml \
--dtype quantized \
--optimize VIPNANOQI_PID0X88 \
--viv-sdk ${ACUITY_PATH}vcmdtools \
--pack-nbg-unify
rm -rf ${NAME}_nbg_unify
mv ../*_nbg_unify ${NAME}_nbg_unify
cd ${NAME}_nbg_unify
mv network_binary.nb ${NAME}.nb
cd ..
#save normal case demo export.data
mkdir -p ${NAME}_normal_case_demo
mv *.h *.c .project .cproject *.vcxproj BUILD *.linux *.export.data ${NAME}_normal_case_demo
# delete normal_case demo source
#rm *.h *.c .project .cproject *.vcxproj BUILD *.linux *.export.data
rm *.data *.quantize *.json *_inputmeta.yml
If you use VIM3L, optimize use VIPNANOQI_PID0X99.
If run succeed, converted model and library will generate in demo/densenet_ctc_nbg_unify.
$ bash 0_import_model.sh && bash 1_quantize_model.sh && bash 2_export_case_code.sh $ cd acuity-toolkit/demo/densenet_ctc_nbg_unify $ ls BUILD densenet_ctc.nb densenetctc.vcxproj main.c makefile.linux nbg_meta.json vnn_densenetctc.c vnn_densenetctc.h vnn_global.h vnn_post_process.c vnn_post_process.h vnn_pre_process.c vnn_pre_process.h
Get the source code: khadas/vim3_npu_applications_lite
$ git clone https://github.com/khadas/vim3_npu_applications_lite
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
Put densenet_ctc.nb into vim3_npu_applications_lite/densenet_ctc_demo_picture/nn_data.
Replace densenet_ctc_demo_picture/vnn_densenetctc.c and densenet_ctc_demo_picture/include/vnn_densenetctc.h with your generating vnn_densenetctc.c and vnn_densenetctc.h.
# Compile $ cd vim3_npu_applications_lite/densenet_ctc_demo_picture $ bash build_vx.sh $ cd bin_r_cv4 $ ./densenet_ctc_demo_picture -m ../nn_data/densenet_ctc.nb -p ../KhadasTeam.png