This is an old revision of the document!
Download yolov8 official codes. Refer README.md to train a yolov8n model.
$ git clone https://github.com/ultralytics/ultralytics.git
The SDK only supports python3.6 or python3.8, here is an example of creating a virtual environment for python3.8.
Install python packages.
$ sudo apt update $ sudo apt install python3-dev python3-numpy
Follow this docs to install conda.
Then create a virtual environment.
$ conda create -n npu-env python=3.8 $ conda activate npu-env #activate $ conda deactivate #deactivate
Download Tool from Rockchip Github.
$ git clone https://github.com/rockchip-linux/rknn-toolkit2.git $ git checkout 9ad79343fae625f4910242e370035fcbc40cc31a
Install dependences and RKNN toolkit2 packages,
$ cd rknn-toolkit2 $ sudo apt-get install python3 python3-dev python3-pip $ sudo apt-get install libxslt1-dev zlib1g-dev libglib2.0 libsm6 libgl1-mesa-glx libprotobuf-dev gcc cmake $ pip3 install -r doc/requirements_cp38-*.txt $ pip3 install packages/rknn_toolkit2-*-cp38-cp38-linux_x86_64.whl
After training model, modify ultralytics/ultralytics/nn/modules/head.py as follows.
diff --git a/ultralytics/nn/modules/head.py b/ultralytics/nn/modules/head.py
index 0b02eb3..0a6e43a 100644
--- a/ultralytics/nn/modules/head.py
+++ b/ultralytics/nn/modules/head.py
@@ -42,6 +42,9 @@ class Detect(nn.Module):
def forward(self, x):
"""Concatenates and returns predicted bounding boxes and class probabilities."""
+ if torch.onnx.is_in_onnx_export():
+ return self.forward_export(x)
+
shape = x[0].shape # BCHW
for i in range(self.nl):
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
@@ -80,6 +83,15 @@ class Detect(nn.Module):
a[-1].bias.data[:] = 1.0 # box
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
+ def forward_export(self, x):
+ results = []
+ for i in range(self.nl):
+ dfl = self.cv2[i](x[i]).contiguous()
+ cls = self.cv3[i](x[i]).contiguous()
+ results.append(torch.cat([cls, dfl], 1).permute(0, 2, 3, 1).unsqueeze(1))
+ # results.append(torch.cat([cls, dfl], 1))
+ return tuple(results)
+
Create a python file written as follows to export onnx model.
from ultralytics import YOLO
model = YOLO("./runs/detect/train/weights/best.pt")
results = model.export(format="onnx")
Enter rknn-toolkit2/examples/onnx/yolov5 and modify test.py as follows.
# Create RKNN object
rknn = RKNN(verbose=True)
# pre-process config
print('--> Config model')
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform='rk3588')
print('done')
# Load ONNX model
print('--> Loading model')
ret = rknn.load_onnx(model=”./yolov8n.onnx”)
if ret != 0:
print('Load model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset=”./dataset.txt”)
if ret != 0:
print('Build model failed!')
exit(ret)
print('done')
# Export RKNN model
print('--> Export rknn model')
ret = rknn.export_rknn(“./yolov8n.rknn”)
if ret != 0:
print('Export rknn model failed!')
exit(ret)
print('done')
Run test.py to generate rknn model.
$ python3 test.py
Clone the source code form our Github.
$ git clone https://github.com/khadas/edge2-npu
$ sudo apt update $ sudo apt install cmake libopencv-dev
Put yolov8n.rknn in edge2-npu/C++/yolov8n/data/model.
// compile $ bash build.sh // run $ cd install/yolov8n $ ./yolov8n data/model/yolov8n.rknn data/img/bus.jpg
Put yolov8n.rknn in edge2-npu/C++/yolov8n_cap/data/model.
// compile $ bash build.sh // run $ cd install/yolov8n_cap $ ./yolov8n_cap data/model/yolov8n_cap.rknn 33
33 is the interface of camera.
If your yolov8n model classes is not the same as coco, please change ‘’data/coco_80_labels_list.txt’’ and the ‘’OBJ_CLASS_NUM’’ in ‘’include/postprocess.h’’.