Doc for version ddk-3.4.7.7
Download YOLOv8 official code ultralytics/ultralytics
$ git clone https://github.com/ultralytics/ultralytics
Refer README.md
to train a YOLOv8n model. My version torch==1.10.1
and ultralytics==8.0.86
.
Follow Docker official documentation to install Docker: Install Docker Engine on Ubuntu.
Follow the script below to get Docker image:
docker pull numbqq/npu-vim4
Get source khadas/vim4_npu_sdk.
$ git lfs install $ git lfs clone https://github.com/khadas/vim4_npu_sdk $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-3.1.7.4 convert-in-docker.sh Dockerfile docs README.md
adla-toolkit-binary/docs
- SDK documentationsadla-toolkit-binary/bin
- SDK tools required for model conversionadla-toolkit-binary/demo
- Conversion examplesIf your kernel is older than 241129, please use branch npu-ddk-1.7.5.5.
After training model, modify ultralytics/ultralytics/nn/modules/head.py
as follows.
diff --git a/ultralytics/nn/modules/head.py b/ultralytics/nn/modules/head.py index 0b02eb3..0a6e43a 100644 --- a/ultralytics/nn/modules/head.py +++ b/ultralytics/nn/modules/head.py @@ -42,6 +42,9 @@ class Detect(nn.Module): def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" + if torch.onnx.is_in_onnx_export(): + return self.forward_export(x) + shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) @@ -80,6 +83,15 @@ class Detect(nn.Module): a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) + def forward_export(self, x): + results = [] + for i in range(self.nl): + dfl = self.cv2[i](x[i]).contiguous() + cls = self.cv3[i](x[i]).contiguous() + results.append(torch.cat([cls, dfl], 1)) + return tuple(results) +
If you pip-installed ultralytics package, you should modify in package.
Create a python file written as follows to export ONNX model.
from ultralytics import YOLO model = YOLO("./runs/detect/train/weights/best.pt") results = model.export(format="onnx")
$ python export.py
Use Netron to check your model output like this. If not, please check your head.py
.
Enter vim4_npu_sdk/demo
and modify convert_adla.sh
as follows.
#!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/yolov8n/yolov8n.onnx \ --inputs "images" \ --input-shapes "3,640,640" \ --dtypes "float32" \ --quantize-dtype int16 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --inference-input-type "float32" \ --inference-output-type "float32" \ --source-file dataset.txt \ --batch-size 1 --target-platform PRODUCT_PID0XA003
Run convert_adla.sh
to generate VIM4 model. The converted model is xxx.adla
in onnx_output
.
$ bash convert_adla.sh
Clone the source code from our khadas/vim4_npu_applications.
$ git clone https://github.com/khadas/vim4_npu_applications
If your kernel is older than 241129, please use version before tag ddk-3.4.7.7.
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
Put yolov8n_int8.adla
in vim4_npu_applications/yolov8n/data/
.
# Compile $ cd vim4_npu_applications/yolov8n $ mkdir build $ cd build $ cmake .. $ make # Run $ ./yolov8n -m ../data/yolov8n_int8.adla -p ../data/horses.jpg
Put yolov8n_int8.adla
in vim4_npu_applications/yolov8n_cap/data/
.
# Compile $ cd vim4_npu_applications/yolov8n_cap $ mkdir build $ cd build $ cmake .. $ make # Run $ ./yolov8n_cap -m ../data/yolov8n_int8.adla -d 0
0
is camera device index.
If your YOLOv8n model classes are not the same as COCO, please change data/coco_80_labels_list.txt
and the OBJ_CLASS_NUM
in include/postprocess.h
.