Doc for version ddk-3.4.7.7
$ git clone https://github.com/bubbliiiing/facenet-pytorch
Follow Docker official documentation to install Docker: Install Docker Engine on Ubuntu.
Follow the script below to get Docker image:
docker pull numbqq/npu-vim4
Download Tool from khadas/vim4_npu_sdk.
$ git lfs install $ git lfs clone https://gitlab.com/khadas/vim4_npu_sdk.git $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-3.1.7.4 convert-in-docker.sh Dockerfile docs README.md
adla-toolkit-binary/docs
- SDK documentationsadla-toolkit-binary/bin
- SDK tools required for model conversionadla-toolkit-binary/demo
- Conversion examplesIf your kernel is older than 241129, please use version before tag ddk-3.4.7.7.
After training model, modify facenet-pytorch/nets/facenet.py
as follows.
diff --git a/nets/facenet.py b/nets/facenet.py index e7a6fcd..93a81f1 100644 --- a/nets/facenet.py +++ b/nets/facenet.py @@ -75,7 +75,7 @@ class Facenet(nn.Module): x = self.Dropout(x) x = self.Bottleneck(x) x = self.last_bn(x) - x = F.normalize(x, p=2, dim=1) return x x = self.backbone(x) x = self.avg(x)
Create a Python file written as follows and run to convert the model to ONNX.
import torch import numpy as np from nets.facenet import Facenet as facenet model_path = "logs/ep092-loss0.177-val_loss1.547.pth" net = facenet(backbone="mobilenet", mode="predict").eval() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net.load_state_dict(torch.load(model_path, map_location=device), strict=False) img = torch.zeros(1, 3, 160, 160) torch.onnx.export(net, img, "./facenet.onnx", verbose=False, opset_version=12, input_names=['images'])
Enter vim4_npu_sdk/demo
and modify convert_adla.sh
as follows.
#!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/facenet/facenet.onnx \ --inputs "images" \ --input-shapes "3,160,160" \ --dtypes "float32" \ --inference-input-type float32 \ --inference-output-type float32 \ --quantize-dtype int8 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --source-file facenet_dataset.txt \ --iterations 394 \ --disable-per-channel False \ --batch-size 1 --target-platform PRODUCT_PID0XA003
Run convert_adla.sh
to generate the VIM4 model. The converted model is xxx.adla
in onnx_output
.
$ bash convert_adla.sh
Clone the source code from our khadas/vim4_npu_applications.
$ git clone https://github.com/khadas/vim4_npu_applications
If your kernel is older than 241129, please use version before tag ddk-3.4.7.7.
$ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake
There are two modes of this demo. One is converting face images into feature vectors and saving vectors in the face library. Another is comparing input face image with faces in the library and outputting Euclidean distance and cosine similarity.
Put facenet_int8.adla
in vim4_npu_applications/facenet/data/
.
# Compile $ cd vim4_npu_applications/facenet $ mkdir build $ cd build $ cmake .. $ make # Run mode 1 $ ./facenet -m ../data/facenet_int8.adla -p 1
After running mode 1, a file named face_feature_lib
will generate in vim4_npu_applications/facenet
. With this file generated, you can run mode 2.
# Run mode 2
$ ./facenet -m ../data/model/facenet_int8.adla -p ../data/img/lin_2.jpg
Here are two comparison methods, Euclidean distance and cosine similarity.
Euclidean distance is smaller, more similar between two faces.
Cosine similarity is closer to 1, more similar between two faces.