~~tag> NPU YOLO OpenCV VIM4 ~~ **Doc for version ddk-3.4.7.7** ====== YOLOv8n OpenCV VIM4 Demo - 2 ====== {{indexmenu_n>2}} ===== Get Source Code ===== Download YOLOv8 official code [[gh>ultralytics/ultralytics]] ```shell $ git clone https://github.com/ultralytics/ultralytics ``` Refer ''README.md'' to train a YOLOv8n model. My version ''torch==1.10.1'' and ''ultralytics==8.0.86''. ===== Convert Model ===== ==== Build virtual environment ==== Follow Docker official documentation to install Docker: [[https://docs.docker.com/engine/install/ubuntu/|Install Docker Engine on Ubuntu]]. Follow the script below to get Docker image: ```shell docker pull numbqq/npu-vim4 ``` ==== Get Model Conversion Tools ==== Get source [[gh>khadas/vim4_npu_sdk]]. ```shell $ git lfs install $ git lfs clone https://github.com/khadas/vim4_npu_sdk $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-3.1.7.4 convert-in-docker.sh Dockerfile docs README.md ``` * ''adla-toolkit-binary/docs'' - SDK documentations * ''adla-toolkit-binary/bin'' - SDK tools required for model conversion * ''adla-toolkit-binary/demo'' - Conversion examples If your kernel is older than 241129, please use branch npu-ddk-1.7.5.5. ==== Convert ==== After training model, modify ''ultralytics/ultralytics/nn/modules/head.py'' as follows. ```diff head.py diff --git a/ultralytics/nn/modules/head.py b/ultralytics/nn/modules/head.py index 0b02eb3..0a6e43a 100644 --- a/ultralytics/nn/modules/head.py +++ b/ultralytics/nn/modules/head.py @@ -42,6 +42,9 @@ class Detect(nn.Module): def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" + if torch.onnx.is_in_onnx_export(): + return self.forward_export(x) + shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) @@ -80,6 +83,15 @@ class Detect(nn.Module): a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) + def forward_export(self, x): + results = [] + for i in range(self.nl): + dfl = self.cv2[i](x[i]).contiguous() + cls = self.cv3[i](x[i]).contiguous() + results.append(torch.cat([cls, dfl], 1)) + return tuple(results) + ``` If you pip-installed ultralytics package, you should modify in package. Create a python file written as follows to export ONNX model. ```python export.py from ultralytics import YOLO model = YOLO("./runs/detect/train/weights/best.pt") results = model.export(format="onnx") ``` ```shell $ python export.py ``` Use [[https://netron.app/ | Netron]] to check your model output like this. If not, please check your ''head.py''. {{:products:sbc:vim4:npu:demos:yolov8n-vim4-output-ddk-3-4-7-7.webp?600|}} Enter ''vim4_npu_sdk/demo'' and modify ''convert_adla.sh'' as follows. ```sh convert_adla.sh #!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/yolov8n/yolov8n.onnx \ --inputs "images" \ --input-shapes "3,640,640" \ --dtypes "float32" \ --quantize-dtype int16 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --inference-input-type "float32" \ --inference-output-type "float32" \ --source-file dataset.txt \ --batch-size 1 --target-platform PRODUCT_PID0XA003 ``` Run ''convert_adla.sh'' to generate VIM4 model. The converted model is ''xxx.adla'' in ''onnx_output''. ```shell $ bash convert_adla.sh ``` ===== Run NPU ===== ==== Get source code ==== Clone the source code from our [[gh>khadas/vim4_npu_applications]]. ```shell $ git clone https://github.com/khadas/vim4_npu_applications ``` If your kernel is older than 241129, please use version before tag ddk-3.4.7.7. ==== Install dependencies ==== ```shell $ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake ``` ==== Compile and run ==== === Picture input demo === Put ''yolov8n_int8.adla'' in ''vim4_npu_applications/yolov8n/data/''. ```shell # Compile $ cd vim4_npu_applications/yolov8n $ mkdir build $ cd build $ cmake .. $ make # Run $ ./yolov8n -m ../data/yolov8n_int8.adla -p ../data/horses.jpg ``` {{:products:sbc:vim4:npu:demos:yolov8n-demo-output.webp?800|}} === Camera input demo === Put ''yolov8n_int8.adla'' in ''vim4_npu_applications/yolov8n_cap/data/''. ```shell # Compile $ cd vim4_npu_applications/yolov8n_cap $ mkdir build $ cd build $ cmake .. $ make # Run $ ./yolov8n_cap -m ../data/yolov8n_int8.adla -d 0 ``` ''0'' is camera device index. If your **YOLOv8n** model classes are not the same as **COCO**, please change ''data/coco_80_labels_list.txt'' and the ''OBJ_CLASS_NUM'' in ''include/postprocess.h''.