~~tag> NPU Densenet VIM4 ONNX~~ ====== DenseNet CTC ONNX Keras VIM4 Demo - 3====== {{indexmenu_n>3}} ===== Get the source code ===== We will use a DenseNet model based on [[gh>YCG09/chinese_ocr]] ```shell git clone https://github.com/YCG09/chinese_ocr ``` ===== Convert the model ===== ==== Build a virtual environment ==== Follow Docker official documentation to install Docker: [[https://docs.docker.com/engine/install/ubuntu/|Install Docker Engine on Ubuntu]]. Follow the script below to get Docker image: ```shell docker pull numbqq/npu-vim4 ``` ===== Get Convert Tool ===== ```shell $ git lfs install $ git lfs clone https://gitlab.com/khadas/vim4_npu_sdk.git $ cd vim4_npu_sdk $ ls adla-toolkit-binary adla-toolkit-binary-1.2.0.9 convert-in-docker.sh Dockerfile docs README.md ``` * ''adla-toolkit-binary/docs'' - SDK documentations * ''adla-toolkit-binary/bin'' - SDK tools required for model conversion * ''adla-toolkit-binary/demo'' - Conversion examples ==== Get the conversion tool ==== Download The conversion tool from [[gl>khadas/vim4_npu_sdk]]. ```shell $ git clone https://gitlab.com/khadas/vim4_npu_sdk ``` After training the model, run the scripts as follows to modify net input and output and convert the model to ONNX. Keras model(''.h5'') can be converted into a VIM4 model directly. If you want to convert a Keras model, please use ''model.save'' to save the model with weight and network structure. ```python export.py import onnx from keras.models import * import keras import keras2onnx from train import get_model import densenet basemodel, model = get_model(32, 88) # input height, classes number basemodel.load_weights("models/weights_densenet-32-0.40.h5") onnx_model = keras2onnx.convert_keras(basemodel, basemodel.name, target_opset=12) onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_value = int(32) onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_value = int(280) onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.node.remove(onnx_model.graph.node[0]) onnx_model.graph.node[0].input[0] = "the_input" onnx.save_model(onnx_model, "./densenet_ctc.onnx") ``` Enter ''vim4_npu_sdk/demo'' and modify ''convert_adla.sh'' as follows. We should quantize the model to **int16** because it is very inaccurate with **int8**. ```bash convert_adla.sh #!/bin/bash ACUITY_PATH=../bin/ #ACUITY_PATH=../python/tvm/ adla_convert=${ACUITY_PATH}adla_convert if [ ! -e "$adla_convert" ]; then adla_convert=${ACUITY_PATH}adla_convert.py fi $adla_convert --model-type onnx \ --model ./model_source/densenet_ctc/densenet_ctc.onnx \ --inputs "the_input" \ --input-shapes "1,32,280" \ --dtypes "float32" \ --inference-input-type float32 \ --inference-output-type float32 \ --quantize-dtype int16 --outdir onnx_output \ --channel-mean-value "0,0,0,255" \ --source-file ./densenet_ctc_dataset.txt \ --iterations 500 \ --disable-per-channel False \ --batch-size 1 --target-platform PRODUCT_PID0XA003 ``` Run ''convert_adla.sh'' to generate the VIM4 model. The converted model is ''xxx.adla'' in ''onnx_output''. ```shell $ bash convert_adla.sh ``` ===== Run inference on the NPU ===== ==== Get source code ==== Clone the source code [[gh>khadas/vim4_npu_applications]]. ```shell $ git clone https://github.com/khadas/vim4_npu_applications ``` ==== Install dependencies ==== ```shell $ sudo apt update $ sudo apt install libopencv-dev python3-opencv cmake ``` ==== Compile and run ==== === Picture input demo === Put ''densenet_ctc_int16.adla'' in ''vim4_npu_applications/densenet_ctc/data/''. ```shell # Compile $ cd vim4_npu_applications/densenet_ctc $ mkdir build $ cd build $ cmake .. $ make # Run $ sudo ./densenet_ctc -m ../data/densenet_ctc_int16.adla -p ../data/KhadasTeam.png ``` If your ''densenet_ctc'' - **DenseNet-CTC** model classes are not the same, please change ''data/class_str.txt'' and the ''OBJ_CLASS_NUM'' in ''include/postprocess.h''.