====== TFLite Edge2 Demo - 8 ====== We can run TFLite models by converting them into RKNN format and running them on the onboard NPU. ===== Get Source code ===== Clone the examples [[gh>sravansenthiln1/rknn_tflite]]. ```shell $ git clone https://github.com/sravansenthiln1/rknn_tflite $ cd rknn_tflite ``` ===== RKNN Conversion ===== You can convert TFLite models to run the NPU using the ''convert.py'' conversion script from the source. **Requires:** Ubuntu 22.04/20.04/18.04 x86 Host computer. After you have cloned the source code: ==== Get the necessary system packages ==== ```shell $ sudo apt-get install git python3 python3-dev python3-pip $ sudo apt-get install libxslt1-dev zlib1g-dev libglib2.0 libsm6 libgl1-mesa-glx libprotobuf-dev gcc cmake ``` ==== Clone the conversion tools ==== ```shell $ git clone https://github.com/rockchip-linux/rknn-toolkit2 $ cd rknn-toolkit2 $ git checkout b25dadacc24b88eb7dfcaa47c9c525ecca89b319 ``` At this point of time, you can also create a virtual environment to store all the packages you need. This will keep your system packages clean and not disturb their package versions. for this you need to install [[https://conda.io/projects/conda/en/stable/user-guide/install/linux.html | Conda]] ```shell $ conda create -n npu-env $ conda activate npu-env ``` whenever you need to convert the models, you need to activate this env. ==== Find the appropriate python version ==== ```shell $ python3 --version ``` and run the command accordingly | python version | command | | 3.11 | ''version=cp311'' | | 3.10 | ''version=cp310'' | | 3.9 | ''version=cp39'' | | 3.8 | ''version=cp38'' | | 3.7 | ''version=cp37'' | | 3.6 | ''version=cp36'' | ==== Install the requirements ==== ```shell $ pip3 install -r rknn-toolkit2/packages/requirements_$version-*.txt ``` ==== Install the appropriate toolkit wheel ==== ```shell $ pip3 install rknn-toolkit2/packages/rknn_toolkit2-*-$version-$version-linux_x86_64.whl $ cd ../ ``` ==== Try using the conversion tool ==== ```shell $ python3 convert.py ``` eg. to convert a file such as detect_model.tflite, run ```shell $ python3 convert.py detect_model ``` in the same directory, a file called detect_model.rknn will have been created. ===== RKNN Deployment ===== To run it on your board, you need to install appropriate RKNN API wheel After cloning the source code: ==== Install pip ==== ```shell $ sudo apt-get install python3-pip ``` ==== Install necessary python packages ==== ```shell $ pip3 install numpy pillow opencv-python librosa sounddevice ``` ==== clone the toolkit ==== ```shell $ git clone https://github.com/rockchip-linux/rknn-toolkit2 $ cd rknn-toolkit2 $ git checkout b25dadacc24b88eb7dfcaa47c9c525ecca89b319 ``` ==== Find the system python version ==== ```shell $ python3 --version ``` and run the command accordingly | python version | command | | 3.11 | ''version=cp311'' | | 3.10 | ''version=cp310'' | | 3.9 | ''version=cp39'' | | 3.8 | ''version=cp38'' | | 3.7 | ''version=cp37'' | | 3.6 | ''version=cp36'' | ==== Install the appropriate toolkit wheel ==== ```shell $ pip3 install rknn_toolkit_lite2/packages/rknn_toolkit_lite2-*-$version-$version-linux_aarch64.whl ``` ==== Copy the runtime library ==== ```shell $ sudo cp rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so /usr/lib/ $ cd ../ ``` ===== Run Examples ===== Taking the Mobilenet v1 as example. ==== Enter the example directory ==== ```shell $ cd mobilenet_v1 ``` ==== Run the example ==== ```shell $ python3 run_npu_inference.py ```