~~tag> DenseNet NPU Edge2 RK3588~~ ====== DenseNet CTC ONNX Keras Edge2 Demo - 3 ====== {{indexmenu_n>3}} ===== Get Source Code ===== We will use a DenseNet model based on [[gh>YCG09/chinese_ocr]]. ```shell git clone https://github.com/YCG09/chinese_ocr.git ``` ===== Convert Model ===== ==== Build virtual environment ==== The SDK only supports **python3.6** or **python3.8**, here is an example of creating a virtual environment for **python3.8**. Install python packages. ```shell $ sudo apt update $ sudo apt install python3-dev python3-numpy ``` Follow this docs to install [[https://conda.io/projects/conda/en/stable/user-guide/install/linux.html | conda]]. Then create a virtual environment. ```shell $ conda create -n npu-env python=3.8 $ conda activate npu-env #activate $ conda deactivate #deactivate ``` ==== Get convert tool ==== Download Tool from [[gh>rockchip-linux/rknn-toolkit2]]. ```shell $ git clone https://github.com/rockchip-linux/rknn-toolkit2.git $ git checkout 9ad79343fae625f4910242e370035fcbc40cc31a ``` Install dependences and RKNN toolkit2 packages. ```shell $ cd rknn-toolkit2 $ sudo apt-get install python3 python3-dev python3-pip $ sudo apt-get install libxslt1-dev zlib1g-dev libglib2.0 libsm6 libgl1-mesa-glx libprotobuf-dev gcc cmake $ pip3 install -r doc/requirements_cp38-*.txt $ pip3 install packages/rknn_toolkit2-*-cp38-cp38-linux_x86_64.whl ``` ==== Convert ==== After training model, run the codes as follows to modify net input and output and convert model to onnx. Keras model(.h5) can convert rknn model directly. If you want to convert keras model, please use ''model.save'' to save model with weight and network structure. ```python export.py import onnx from keras.models import * import keras import keras2onnx from train import get_model import densenet basemodel, model = get_model(32, 88) # input height, classes number basemodel.load_weights("models/weights_densenet-32-0.40.h5") onnx_model = keras2onnx.convert_keras(basemodel, basemodel.name, target_opset=12) onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_value = int(1) onnx_model.graph.input[0].type.tensor_type.shape.dim[2].dim_value = int(32) onnx_model.graph.input[0].type.tensor_type.shape.dim[3].dim_value = int(280) onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_value = int(1) onnx_model.graph.node.remove(onnx_model.graph.node[0]) onnx_model.graph.node[0].input[0] = "the_input" onnx.save_model(onnx_model, "./densenet_ctc.onnx") ``` Enter ''rknn-toolkit2/examples/onnx/yolov5'' and modify ''test.py'' as follows. ```python test.py # Create RKNN object rknn = RKNN(verbose=True) # pre-process config print('--> Config model') rknn.config(mean_values=[0], std_values=[255], target_platform='rk3588') print('done') # Load ONNX model print('--> Loading model') ret = rknn.load_onnx(model='./densenet_ctc.onnx') if ret != 0: print('Load model failed!') exit(ret) print('done') # Build model print('--> Building model') ret = rknn.build(do_quantization=True, dataset='./dataset.txt') if ret != 0: print('Build model failed!') exit(ret) print('done') # Export RKNN model print('--> Export rknn model') ret = rknn.export_rknn('./densenet_ctc.rknn') if ret != 0: print('Export rknn model failed!') exit(ret) print('done') ``` Run ''test.py'' to generate rknn model. ```shell $ python3 test.py ``` ===== Run NPU ===== ==== Get source code ==== Clone the source code from our [[gh>khadas/edge2-npu]]. ```shell $ git clone https://github.com/khadas/edge2-npu ``` ==== Install dependencies ==== ```shell $ sudo apt update $ sudo apt install cmake libopencv-dev ``` ==== Compile and run ==== === Picture input demo === Put ''densenet_ctc.rknn'' in ''edge2-npu/C++/densenet_ctc/data/model''. ```shell # Compile $ cd edge2-npu/C++/densenet_ctc $ bash build.sh # Run $ cd install/densenet_ctc $ ./densenet_ctc data/model/densenet_ctc.rknn data/img/KhadasTeam.png ``` If your **DenseNet CTC** model classes is not the same as mine, please change ''data/class_str.txt'' and the ''OBJ_CLASS_NUM'' in ''include/postprocess.h''.