This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
products:sbc:edge2:npu:npu-convert [2022/11/20 22:46] frank |
products:sbc:edge2:npu:npu-convert [2024/06/06 21:57] (current) nick |
||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | ====== NPU Model Convert ====== | + | {{indexmenu_n> |
| - | ===== Introduction | + | ====== Edge2 NPU Model Convert ====== |
| - | ===== Virtual Environment ===== | + | ===== Build Virtual Environment ===== |
| - | The SDK only supports | + | The SDK only supports |
| Install python packages. | Install python packages. | ||
| ```shell | ```shell | ||
| + | $ sudo apt update | ||
| $ sudo apt install python3-dev python3-numpy | $ sudo apt install python3-dev python3-numpy | ||
| ``` | ``` | ||
| Line 23: | Line 24: | ||
| ``` | ``` | ||
| - | After creating the virtual environment, | + | ===== Get Convert Tool ===== |
| - | ===== Get SDK ===== | + | Download Tool from [[gh>rockchip-linux/ |
| - | + | ||
| - | Clone SDK from [[https:// | + | |
| ```shell | ```shell | ||
| Line 33: | Line 32: | ||
| $ git checkout 9ad79343fae625f4910242e370035fcbc40cc31a | $ git checkout 9ad79343fae625f4910242e370035fcbc40cc31a | ||
| ``` | ``` | ||
| - | |||
| - | ===== Convert ===== | ||
| Install dependences and RKNN toolkit2 packages, | Install dependences and RKNN toolkit2 packages, | ||
| Line 46: | Line 43: | ||
| ``` | ``` | ||
| - | Choose '' | + | ===== Convert Model ===== |
| - | ```diff | + | Converting model has five main steps. Create RKNN object, pre-process config, load model, build model and export RKNN model. Here, take '' |
| + | |||
| + | Create RKNN object. | ||
| + | |||
| + | ```python | ||
| + | # Create RKNN object | ||
| + | rknn = RKNN(verbose=True) | ||
| + | ``` | ||
| + | |||
| + | Pre-process config. | ||
| + | |||
| + | ```python | ||
| + | # pre-process config | ||
| + | print(' | ||
| + | rknn.config(mean_values=[[0, | ||
| + | print(' | ||
| + | ``` | ||
| + | |||
| + | * **mean_values** - The mean of normalization parameter. | ||
| + | * **std_values** - The variance of normalization parameter. | ||
| + | model input = (image – mean_values) / std_values | ||
| + | * **target_platform** - Chooses '' | ||
| + | |||
| + | Load model. | ||
| + | |||
| + | ```python | ||
| + | # Load ONNX model | ||
| + | print(' | ||
| + | ret = rknn.load_onnx(model=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | ``` | ||
| + | |||
| + | * **model** - The path of model. | ||
| + | |||
| + | Load other platform model. | ||
| + | |||
| + | ```python | ||
| + | # Load pytorch model | ||
| + | print(' | ||
| + | ret = rknn.load_pytorch(model=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | |||
| + | # Load tensorflow model | ||
| + | print(' | ||
| + | ret = rknn.load_tensorflow(tf_pb=' | ||
| + | | ||
| + | | ||
| + | | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | |||
| + | # Load caffe model | ||
| + | print(' | ||
| + | ret = rknn.load_caffe(model=' | ||
| + | blobs=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | |||
| + | # Load tensorflow lite model | ||
| + | print(' | ||
| + | ret = rknn.load_tflite(model=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | |||
| + | # Load darknet model | ||
| + | print(' | ||
| + | ret = rknn.load_darknet(model=' | ||
| + | weight=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | ``` | ||
| + | |||
| + | * **inputs/ | ||
| + | * **input_size_list** - The size and channels of input. | ||
| + | |||
| + | Build model | ||
| + | |||
| + | ```python | ||
| + | # Build model | ||
| + | print(' | ||
| + | ret = rknn.build(do_quantization=True, | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | ``` | ||
| + | |||
| + | * **do_quantization** - Quantize model or not. | ||
| + | * **dataset** - The path of txt file which is written in image path. | ||
| + | |||
| + | Export RKNN model | ||
| + | |||
| + | ```python | ||
| + | # Export RKNN model | ||
| + | print(' | ||
| + | ret = rknn.export_rknn(export_path=' | ||
| + | if ret != 0: | ||
| + | print(' | ||
| + | exit(ret) | ||
| + | print(' | ||
| + | ``` | ||
| + | |||
| + | * **export_path** - The path of rknn model. | ||
| + | |||
| + | All the above codes can be found in '' | ||
| + | |||
| + | ```diff | ||
| diff --git a/ | diff --git a/ | ||
| index a1c9988..f7ce11e 100644 | index a1c9988..f7ce11e 100644 | ||
| Line 54: | Line 171: | ||
| +++ b/ | +++ b/ | ||
| @@ -240,7 +240,7 @@ if __name__ == ' | @@ -240,7 +240,7 @@ if __name__ == ' | ||
| - | + | ||
| # pre-process config | # pre-process config | ||
| | | ||
| Line 60: | Line 177: | ||
| + rknn.config(mean_values=[[0, | + rknn.config(mean_values=[[0, | ||
| | | ||
| - | + | ``` | |
| - | # Load ONNX model | + | |
| - | ``` | + | |
| - | Convert | + | Run '' |
| ```shell | ```shell | ||
| - | cd examples/ | + | $ python3 test.py |
| - | python3 test.py | + | |
| ``` | ``` | ||
| - | After convert, it will generate the rknn file '' | + | <WRAP tip > |
| + | In '' | ||
| + | </ | ||
| - | ```shell | + | ===== See Also ===== |
| - | $ ls | + | |
| - | bus.jpg | + | |
| - | ``` | + | |
| For more usage, please refer to the related documents under '' | For more usage, please refer to the related documents under '' | ||