Clone the source code form our khadas/edge2-npu.
$ git clone https://github.com/khadas/edge2-npu
There are two types of application source code in C++ and Python.
Enter Python directory,
$ cd Python
Install dependences,
$ sudo cp ../C++/runtime/librknn_api/aarch64/librknnrt.so /usr/lib $ sudo apt update $ sudo apt install -y python3-dev python3-pip python3-opencv python3-numpy $ pip3 install ./wheel/rknn_toolkit_lite2-1.3.0-cp310-cp310-linux_aarch64.whl
Take yolov5 as an example, other demos are similar.
$ cd resnet18 $ python3 resnet18.py --> Load RKNN model done --> Init runtime environment I RKNN: [17:07:10.282] RKNN Runtime Information: librknnrt version: 1.3.0 (c193be371@2022-05-04T20:16:33) I RKNN: [17:07:10.282] RKNN Driver Information: version: 0.7.2 I RKNN: [17:07:10.282] RKNN Model Information: version: 1, toolkit version: 1.3.0-11912b58(compiler version: 1.3.0 (c193be371@2022-05-04T20:23:58)), target: RKNPU v2, target platform: rk3588, framework name: PyTorch, framework layout: NCHW done --> Running model resnet18 -----TOP 5----- [812]: 0.9996383190155029 [404]: 0.00028062646742910147 [657]: 1.632110434002243e-05 [833 895]: 1.015904672385659e-05 [833 895]: 1.015904672385659e-05 done
Enter C++ directory, take yolov5 as an example.
Install dependences.
$ sudo apt update $ sudo apt install cmake libopencv-dev
Complie and Run
# Yolov5 # Compile $ cd yolov5 $ bash build.sh # Run $ cd install/yolov5 $ ./yolov5 data/model/yolov5s-640-640.rknn data/img/bus.jpg # Yolov5_cap # Compile $ cd yolov5_cap $ bash build.sh # Run $ cd install/yolov5 $ ./yolov5 data/model/yolov5s-640-640.rknn 33
33
is the index of camera.